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Hepatitis C elimination

PEOPLE WHO INJECT DRUGS

burnet.edu.au

• Primary risk group 

• Priority population

• Inform tailored intervention

• Ongoing monitoring and evaluation

• Patient level information

HEPATITIS C SURVEILLANCE

https://www.burnet.edu.au/


Australian Sentinel Surveillance of Blood Borne Viruses and 
Sexually Transmissible Infections 

Monitor HIV, viral hepatitis and STIs in 

Priority populations
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Strengths and limitations of ACCESS

https://www.burnet.edu.au/
https://www.burnet.edu.au/


Can machine learning help?

EXPERT-DRIVEN ALGORITHMS DATA-DRIVEN ALGORITHMS

Define risk using proxy indicators

Relies on experts to produce all 
the possible solutions

Requires human effort to 
program all the rules

Computer learns from the data

Recognises patterns and 
relationships between variables 

No need to program rules
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Available ACCESS data and variables

Expert-driven method uses limited 
variables based on known predictors

Data-driven method uses all available 
variables plus expert knowledge

Injecting 
drug use

Opioid 
agonist 
treatment

Tests

Drug 
screens

https://www.burnet.edu.au/


OBJECTIVE 1

Find out which variables 
were important to the 

classification

OBJECTIVE 2

Develop a model to 
classify people who 

inject drugs

Objectives and method



Training the machine learning model

SAMPLE OF LABELLED DATA FOR TRAINING AND TESTING

Labels

1 = People who inject drugs

0 = Random sample of patients

Data

88 features derived from variables in 

patient clinical records

burnet.edu.au

https://www.burnet.edu.au/


Results – predictions and important 
features
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Classification of people who inject drugs

n=1454 P O S I T I V E  L A B EL N EGAT I V E  L A B EL

P O S I T I V E  

P R EDI C T I O N
700 55

N EGAT I V E  

P R EDI C T I O N
49 650

METRIC DEFINITION PERFORMANCE

Accuracy Correct predictions 93%

METRIC DEFINITION PERFORMANCE

Accuracy Correct predictions 93%

Precision (PPV)
Positive predictions are 

truly positive
93%

METRIC DEFINITION PERFORMANCE

Accuracy Correct predictions 93%

Precision (PPV)
Positive predictions are 

truly positive
93%

Recall (Sensitivity)
Positive labels are 

predicted positive
93%
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Contributions to model 
predictions

Top 20 contributing features 

• First 5-10 have either a large positive 
or negative influence on the 
prediction 

• Others work in combination to 
influence the model prediction
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Model predictions by number of features
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Model iteration

Number of features Precision (PPV) Recall (Sensitivity)

Learning well – not leaving 
many positive labels 
undetected even after 
removing 18 features

Increased false positive 
predictions – finding 
undetected people who 
inject drugs

https://www.burnet.edu.au/
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Summary
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Implications for surveillance and future direction

• We built a highly predictive model  

• Works when known predictors are 

unavailable 

• Increased pool of candidate people who 

inject drugs 

• We have a new way  to classify risk groups 

• Shows the suitability of machine learning 

for these tasks

• Machine learning has its limitations

• Needs to be evaluated on unseen data and 

real-world scenarios 

• Algorithmic bias should also be assessed

https://www.burnet.edu.au/
https://www.burnet.edu.au/
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Thank you

carol.el-hayek@burnet.edu.au

ACCESS teams at the Burnet and Kirby Institutes, 
ACCESS funders and advisory, participating ACCESS 
clinics, co-authors and my PhD supervisors: 
Margaret Hellard, Jane Hocking, Douglas Boyle and 
Adam Dunn. 
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