Machine learning to identify people who inject drugs for hepatitis C surveillance

Carol El-Hayek, Thi Nguyen, Margaret Hellard, Michael Curtis, Anna Wilkinson, Rachel Sacks-Davis, Nick Scott, Jason Asselin, Paul Dietze, Annie Madden, Htein Linn Aung, Rebecca Guy, Mark Stoové, Douglas Boyle, Jane Hocking, Adam Dunn

AEA ANNUAL SCIENTIFIC MEETING, 2023

AT BURNET INSTITUTE, WE PROUDLY ACKNOWLEDGE THE BOON WURRUNG PEOPLE OF THE KULIN NATIONS AS THE TRADITIONAL CUSTODIANS OF THE LAND ON WHICH OUR OFFICE IS LOCATED. WE PAY OUR RESPECT TO ELDERS PAST AND PRESENT, AND EXTEND THAT RESPECT TO ALL FIRST NATIONS PEOPLE.

Hepatitis C elimination

PEOPLE WHO INJECT DRUGS

- Primary risk group
- Priority population

HEPATITIS C SURVEILLANCE

- Inform tailored intervention
- Ongoing monitoring and evaluation
- Patient level information

burnet.edu.au (f) (in

Australian Sentinel Surveillance of Blood Borne Viruses and Sexually Transmissible Infections

Monitor HIV, viral hepatitis and STIs in Priority populations

in

Strengths and limitations of ACCESS

|--|

Patient exposures (risk factors) linked to outcomes

Limited and inconsistently recorded behavioural risk factor information

Hundreds of EMR variables extracted

No access to important risk information from patient progress notes

- 1	_

Longitudinally linked data from >120 sites representing millions of patient visits

Skill and capacity to process, manage and analyse the data

····					
	•	•	•		
i	٠	•	•		
		_	H	_	

Large volumes of data cannot be manually audited for risk factors

Relies on human effort and expertise to develop algorithms to identify risk groups

Can machine learning help?

EXPERT-DRIVEN ALGORITHMS

Define risk using proxy indicators

Relies on experts to produce all the possible solutions

Requires human effort to program all the rules

DATA-DRIVEN ALGORITHMS

Computer learns from the data

Recognises patterns and relationships between variables

No need to program rules

Available ACCESS data and variables

Expert-driven method uses limited variables based on known predictors

Data-driven method uses all available variables plus expert knowledge

	Injecting drug use Behavioural risk survey	Opic agor trea Prescrip t	oid hist tment tions
Demographics	Chlamydia &	Drug screens Test	
	gonorrhoea tests	requests	Syphilis
Consultations	HIV	Monitoring tests	HCV

in

Objectives and method

Training the machine learning model

SAMPLE OF LABELLED DATA FOR TRAINING AND TESTING

Labels

Data

1 = People who inject drugs

0 = Random sample of patients

88 features derived from variables in

patient clinical records

	label	total_clinics	total_types	gp_clinic	ch_clinic	gbm_gp	sh_clinic	hosp_clinic	total_visits	person_time
0	0	3.0	2.0	0.0	0.0	1.0	1.0	0.0	2.0	0.038330
1	0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	2.0	0.156057
2	1	1.0	1.0	1.0	0.0	0.0	0.0	0.0	145.0	13.382615
3	0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	3.0	0.232717
4	1	7.0	4.0	0.0	1.0	1.0	1.0	1.0	74.0	12.123203
5	1	1.0	1.0	1.0	0.0	0.0	0.0	0.0	43.0	2.937714
6	1	4.0	3.0	1.0	1.0	0.0	1.0	0.0	259.0	13.259412
7	1	3.0	2.0	1.0	1.0	0.0	0.0	0.0	5.0	0.665298

Results – predictions and important features

Classification of people who inject drugs

n=1454	POSITIVE LABEL	NEGATIVE LABEL
POSITIVE PREDICTION	700	55
NEGATIVE PREDICTION	49	650

METRIC	DEFINITION	PERFORMANCE		
Accuracy	Correct predictions	93%		
Precision (PPV)	Positive predictions are truly positive	93%		
Recall (Sensitivity)	Positive labels are predicted positive	93%		

Contributions to model predictions

Top 20 contributing features

- First 5-10 have either a large positive or negative influence on the prediction
- Others work in combination to influence the model prediction

Model predictions by number of features

D

Summary

Implications for surveillance and future direction

- We built a highly predictive model
- Works when known predictors are

unavailable

• Increased pool of candidate people who

inject drugs

• We have a new way to classify risk groups

• Shows the suitability of machine learning

for these tasks

- Machine learning has its limitations
- Needs to be evaluated on unseen data and

real-world scenarios

• Algorithmic bias should also be assessed

Thank you

ACCESS teams at the Burnet and Kirby Institutes, ACCESS funders and advisory, participating ACCESS clinics, co-authors and my PhD supervisors: Margaret Hellard, Jane Hocking, Douglas Boyle and Adam Dunn.

carol.el-hayek@burnet.edu.au

